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Fig. 5. Role of integrin expression on cell adhesion due to NIR, MoS2, and MoS2_NIR treatment. (A) Schematic showing the potential interaction between
MoS2 nanosheets and integrin molecules at the cell surface. (B) Quantification of unbound integrin beta-1 (CD29) in cells treated with and without MoS2
nanosheets. (C) A volcano plot for the cell adhesion (GO:0007155), gray: all of the expressed genes, blue: genes associated with the GO term with no sig-
nificant change in expression, red: genes associated with the GO term that show significant difference in expression due to treatment. (D) Gene track showing
normalized mRNA expression of integrin alpha-7 (ITGA7) and smooth muscle alpha-2 actin (ACTA2) for hMSCs, hMSCs_NIR, hMSCs_ MoS2, and hMSCs
MoS2_NIR. (E) Protein expression level of ITGA7, FAK, vinculin, paxillin, and smooth muscle actin (ACTA2) determined using Western blot for hMSCs,
hMSCs_NIR, hMSCs_ MoS2, and hMSCs MoS2_NIR. GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is internal control. *P < 0.05, ***P < 0.001.
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assay, integrin signaling, and formation of focal adhesion kinase
confirmed the role of MoS2 and photothermal modulation on
cellular functions. Overall, the combination of MoS2 and NIR
light may provide a novel tool to modulate cellular activity
for potential applications in regenerative medicine and cancer
therapeutics.

Materials and Methods
See SI Appendix for detailed materials and methods. Detailed methods for
nanoparticle characterization, in vitro studies, and RNA-seq can be found in
SI Appendix, Materials and Methods.

Synthesis and Characterization. The bulk MoS2 was chemically exfoliated
following previously reported protocols to obtain MoS2 nanosheets (3, 18,
19). The structure of MoS2 nanosheets were evaluated using XRD (Bruker D8
Advanced), AFM (Bruker Dimension Icon Nanoscope), TEM (JEOL JEM-2010),
XPS (Omicron XPS system with Argus detector), Raman spectroscopy (Lab-
Ram HR confocal Raman microscope; Horiba Inc.), DLS (Zetasizer Nano ZS,
Malvern Instrument), and zeta potential. Cellular interactions of MoS2
nanosheet was determined using hMSCs (obtained from Tissue Culture Core,
Institute of Regenerative Medicine, Texas A&M University Health Science
Center). The following in vitro studies were performed: metabolic activity
(Alamar Blue assay), cell cycle (propidium iodide), apoptosis assay (Annexin
V), and cytosketal staining (actin-phalloidin and nucleus-DAPI staining).

RNA-Seq and Analysis. RNA-seq was performed on hMSCs-treated with NIR
(20 mW/cm2), MoS2 nanosheet, and both, using a Nova seq platform (Illu-
mina Nova sEq. 6000) utilizing TruSeqRNA preparation and 75 paired-end
read length. Sequenced reads were aligned to the human reference genome

(hg38) using a RNA-seq aligner, Spliced Transcripts Alignment to a Reference
(STAR) (26). Expression of a gene was determined by counting the number of
uniquely mapped reads overlapping the coding exons normalized by gene
length in FPKM. Genes expressed with >1 FPKM in at least half of the
samples of any condition were only used for the analysis. The gene ex-
pression read counts were modeled as a negative binomial distribution in
GLMs (27) to determine the DEGs. All of the analysis was performed using R.
The GO enrichment analysis was done using GOStats Bioconductor package
(29). For network formation (Cytoscape) (31) and GO term enrichment
(GeneMANIA and ClueGO), only genes with FDR-adjusted P < 0.05 were
selected. REVIGO (32) was performed to visualize GO clustering. Western
analysis was performed using the iBind system (iBind; Invitrogen).

Statistical Analysis.Determination of statistical significance betweenmultiple
groups was completed via ANOVAwith the Tukey method. Significant P values
were considered <0.05 unless otherwise noted. All analysis was completed in
GraphPad Prism.

Data Availability. The data reported in this paper have been deposited in the
Gene Expression Omnibus (GEO) database, https://www.ncbi.nlm.nih.gov/
geo (accession no. GSE141456).
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